1: /* 2: * Copyright (c) 1982, 1986 Regents of the University of California. 3: * All rights reserved. The Berkeley software License Agreement 4: * specifies the terms and conditions for redistribution. 5: * 6: * @(#)vm_swp.c 7.1 (Berkeley) 6/5/86 7: */ 8: 9: #include "../machine/pte.h" 10: 11: #include "param.h" 12: #include "systm.h" 13: #include "dir.h" 14: #include "user.h" 15: #include "buf.h" 16: #include "conf.h" 17: #include "proc.h" 18: #include "seg.h" 19: #include "vm.h" 20: #include "trace.h" 21: #include "map.h" 22: #include "uio.h" 23: 24: /* 25: * Swap IO headers - 26: * They contain the necessary information for the swap I/O. 27: * At any given time, a swap header can be in three 28: * different lists. When free it is in the free list, 29: * when allocated and the I/O queued, it is on the swap 30: * device list, and finally, if the operation was a dirty 31: * page push, when the I/O completes, it is inserted 32: * in a list of cleaned pages to be processed by the pageout daemon. 33: */ 34: struct buf *swbuf; 35: 36: /* 37: * swap I/O - 38: * 39: * If the flag indicates a dirty page push initiated 40: * by the pageout daemon, we map the page into the i th 41: * virtual page of process 2 (the daemon itself) where i is 42: * the index of the swap header that has been allocated. 43: * We simply initialize the header and queue the I/O but 44: * do not wait for completion. When the I/O completes, 45: * iodone() will link the header to a list of cleaned 46: * pages to be processed by the pageout daemon. 47: */ 48: swap(p, dblkno, addr, nbytes, rdflg, flag, dev, pfcent) 49: struct proc *p; 50: swblk_t dblkno; 51: caddr_t addr; 52: int nbytes, rdflg, flag; 53: dev_t dev; 54: u_int pfcent; 55: { 56: register struct buf *bp; 57: register u_int c; 58: int p2dp; 59: register struct pte *dpte, *vpte; 60: int s; 61: extern swdone(); 62: int error = 0; 63: 64: s = splbio(); 65: while (bswlist.av_forw == NULL) { 66: bswlist.b_flags |= B_WANTED; 67: sleep((caddr_t)&bswlist, PSWP+1); 68: } 69: bp = bswlist.av_forw; 70: bswlist.av_forw = bp->av_forw; 71: splx(s); 72: 73: bp->b_flags = B_BUSY | B_PHYS | rdflg | flag; 74: if ((bp->b_flags & (B_DIRTY|B_PGIN)) == 0) 75: if (rdflg == B_READ) 76: sum.v_pswpin += btoc(nbytes); 77: else 78: sum.v_pswpout += btoc(nbytes); 79: bp->b_proc = p; 80: if (flag & B_DIRTY) { 81: p2dp = ((bp - swbuf) * CLSIZE) * KLMAX; 82: dpte = dptopte(&proc[2], p2dp); 83: vpte = vtopte(p, btop(addr)); 84: for (c = 0; c < nbytes; c += NBPG) { 85: if (vpte->pg_pfnum == 0 || vpte->pg_fod) 86: panic("swap bad pte"); 87: *dpte++ = *vpte++; 88: } 89: bp->b_un.b_addr = (caddr_t)ctob(dptov(&proc[2], p2dp)); 90: bp->b_flags |= B_CALL; 91: bp->b_iodone = swdone; 92: bp->b_pfcent = pfcent; 93: } else 94: bp->b_un.b_addr = addr; 95: while (nbytes > 0) { 96: bp->b_bcount = nbytes; 97: minphys(bp); 98: c = bp->b_bcount; 99: bp->b_blkno = dblkno; 100: bp->b_dev = dev; 101: #ifdef TRACE 102: trace(TR_SWAPIO, dev, bp->b_blkno); 103: #endif 104: physstrat(bp, bdevsw[major(dev)].d_strategy, PSWP); 105: if (flag & B_DIRTY) { 106: if (c < nbytes) 107: panic("big push"); 108: return (error); 109: } 110: bp->b_un.b_addr += c; 111: bp->b_flags &= ~B_DONE; 112: if (bp->b_flags & B_ERROR) { 113: if ((flag & (B_UAREA|B_PAGET)) || rdflg == B_WRITE) 114: panic("hard IO err in swap"); 115: swkill(p, "swap: read error from swap device"); 116: error = EIO; 117: } 118: nbytes -= c; 119: dblkno += btodb(c); 120: } 121: s = splbio(); 122: bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY); 123: bp->av_forw = bswlist.av_forw; 124: bswlist.av_forw = bp; 125: if (bswlist.b_flags & B_WANTED) { 126: bswlist.b_flags &= ~B_WANTED; 127: wakeup((caddr_t)&bswlist); 128: wakeup((caddr_t)&proc[2]); 129: } 130: splx(s); 131: return (error); 132: } 133: 134: /* 135: * Put a buffer on the clean list after I/O is done. 136: * Called from biodone. 137: */ 138: swdone(bp) 139: register struct buf *bp; 140: { 141: register int s; 142: 143: if (bp->b_flags & B_ERROR) 144: panic("IO err in push"); 145: s = splbio(); 146: bp->av_forw = bclnlist; 147: cnt.v_pgout++; 148: cnt.v_pgpgout += bp->b_bcount / NBPG; 149: bclnlist = bp; 150: if (bswlist.b_flags & B_WANTED) 151: wakeup((caddr_t)&proc[2]); 152: splx(s); 153: } 154: 155: /* 156: * If rout == 0 then killed on swap error, else 157: * rout is the name of the routine where we ran out of 158: * swap space. 159: */ 160: swkill(p, rout) 161: struct proc *p; 162: char *rout; 163: { 164: 165: printf("pid %d: %s\n", p->p_pid, rout); 166: uprintf("sorry, pid %d was killed in %s\n", p->p_pid, rout); 167: /* 168: * To be sure no looping (e.g. in vmsched trying to 169: * swap out) mark process locked in core (as though 170: * done by user) after killing it so noone will try 171: * to swap it out. 172: */ 173: psignal(p, SIGKILL); 174: p->p_flag |= SULOCK; 175: } 176: 177: /* 178: * Raw I/O. The arguments are 179: * The strategy routine for the device 180: * A buffer, which will always be a special buffer 181: * header owned exclusively by the device for this purpose 182: * The device number 183: * Read/write flag 184: * Essentially all the work is computing physical addresses and 185: * validating them. 186: * If the user has the proper access privilidges, the process is 187: * marked 'delayed unlock' and the pages involved in the I/O are 188: * faulted and locked. After the completion of the I/O, the above pages 189: * are unlocked. 190: */ 191: physio(strat, bp, dev, rw, mincnt, uio) 192: int (*strat)(); 193: register struct buf *bp; 194: dev_t dev; 195: int rw; 196: unsigned (*mincnt)(); 197: struct uio *uio; 198: { 199: register struct iovec *iov; 200: register int c; 201: char *a; 202: int s, error = 0; 203: 204: nextiov: 205: if (uio->uio_iovcnt == 0) 206: return (0); 207: iov = uio->uio_iov; 208: if (useracc(iov->iov_base,(u_int)iov->iov_len,rw==B_READ?B_WRITE:B_READ) == NULL) 209: return (EFAULT); 210: s = splbio(); 211: while (bp->b_flags&B_BUSY) { 212: bp->b_flags |= B_WANTED; 213: sleep((caddr_t)bp, PRIBIO+1); 214: } 215: splx(s); 216: bp->b_error = 0; 217: bp->b_proc = u.u_procp; 218: bp->b_un.b_addr = iov->iov_base; 219: while (iov->iov_len > 0) { 220: bp->b_flags = B_BUSY | B_PHYS | rw; 221: bp->b_dev = dev; 222: bp->b_blkno = btodb(uio->uio_offset); 223: bp->b_bcount = iov->iov_len; 224: (*mincnt)(bp); 225: c = bp->b_bcount; 226: u.u_procp->p_flag |= SPHYSIO; 227: vslock(a = bp->b_un.b_addr, c); 228: physstrat(bp, strat, PRIBIO); 229: (void) splbio(); 230: vsunlock(a, c, rw); 231: u.u_procp->p_flag &= ~SPHYSIO; 232: if (bp->b_flags&B_WANTED) 233: wakeup((caddr_t)bp); 234: splx(s); 235: c -= bp->b_resid; 236: bp->b_un.b_addr += c; 237: iov->iov_len -= c; 238: uio->uio_resid -= c; 239: uio->uio_offset += c; 240: /* temp kludge for tape drives */ 241: if (bp->b_resid || (bp->b_flags&B_ERROR)) 242: break; 243: } 244: bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS); 245: error = geterror(bp); 246: /* temp kludge for tape drives */ 247: if (bp->b_resid || error) 248: return (error); 249: uio->uio_iov++; 250: uio->uio_iovcnt--; 251: goto nextiov; 252: } 253: 254: #define MAXPHYS (63 * 1024) 255: 256: unsigned 257: minphys(bp) 258: struct buf *bp; 259: { 260: 261: if (bp->b_bcount > MAXPHYS) 262: bp->b_bcount = MAXPHYS; 263: }