1: /* Copyright (c) Stichting Mathematisch Centrum, Amsterdam, 1985. */ 2: 3: /* 4: $Header: b1nuI.c,v 1.4 85/08/22 16:51:13 timo Exp $ 5: */ 6: 7: /* Multi-precision integer arithmetic */ 8: 9: #include "b.h" 10: #include "b1obj.h" 11: #include "b1num.h" 12: #include "b0con.h" 13: #include "b3err.h" 14: 15: /* 16: * Number representation: 17: * ====================== 18: * 19: * (Think of BASE = 10 for ordinary decimal notation.) 20: * A number is a sequence of N "digits" b1, b2, ..., bN 21: * where each bi is in {0..BASE-1}, except for negative numbers, 22: * where bN = -1. 23: * The number represented by b1, ..., bN is 24: * b1*BASE**(N-1) + b2*BASE**(N-2) + ... + bN . 25: * The base BASE is chosen so that multiplication of two positive 26: * integers up to BASE-1 can be multiplied exactly using double 27: * precision floating point arithmetic. 28: * Also it must be possible to add two long integers between 29: * -BASE and +BASE (exclusive), giving a result between -2BASE and 30: * +2BASE. 31: * BASE must be even (so we can easily decide whether the whole 32: * number is even), and positive (to avoid all kinds of other trouble). 33: * Presently, it is restricted to a power of 10 by the I/O-conversion 34: * routines (file "b1nuC.c"). 35: * 36: * Canonical representation: 37: * bN is never zero (for the number zero itself, N is zero). 38: * If bN is -1, b[N-1] is never BASE-1 . 39: * All operands are assumed te be in canonical representation. 40: * Routine "int_canon" brings a number in canonical representation. 41: * 42: * Mapping to C objects: 43: * A "digit" is an integer of type "digit", probably an "int". 44: * A number is represented as a "B-integer", i.e. something 45: * of type "integer" (which is actually a pointer to some struct). 46: * The number of digits N is extracted through the macro Length(v). 47: * The i-th digit is extracted through the macro Digit(v,N-i). 48: * (So in C, we count in a backwards direction from 0 ... n-1 !) 49: * A number is created through a call to grab_num(N), which sets 50: * N zero digits (thus not in canonical form!). 51: */ 52: 53: 54: /* 55: * Bring an integer into canonical form. 56: * Make a SmallInt if at all possible. 57: * NB: Work done by int_canon is duplicated by mk_integer for optimization; 58: * if the strategy here changes, look at mk_integer, too! 59: */ 60: 61: Visible integer int_canon(v) integer v; { 62: register int i; 63: 64: if (IsSmallInt(v)) return v; 65: 66: for (i = Length(v) - 1; i >= 0 && Digit(v,i) == 0; --i) 67: ; 68: 69: if (i < 0) { 70: release((value) v); 71: return int_0; 72: } 73: 74: if (i == 0) { 75: digit dig = Digit(v,0); 76: release((value) v); 77: return (integer) MkSmallInt(dig); 78: } 79: 80: if (i > 0 && Digit(v,i) == -1) { 81: while (i > 0 && Digit(v, i-1) == BASE-1) --i; 82: if (i == 0) { 83: release((value) v); 84: return (integer) MkSmallInt(-1); 85: } 86: if (i == 1) { 87: digit dig = Digit(v,0) - BASE; 88: release((value) v); 89: return (integer) MkSmallInt(dig); 90: } 91: Digit(v,i) = -1; 92: } 93: 94: if (i+1 < Length(v)) return (integer) regrab_num((value) v, i+1); 95: 96: return v; 97: } 98: 99: 100: /* General add/subtract subroutine */ 101: 102: typedef double twodigit; /* Might be long on 16 bit machines */ 103: /* Should be in b0con.h */ 104: 105: Hidden twodigit fmodulo(x, y) twodigit x, y; { 106: return x - y * (twodigit) floor((double)x / (double)y); 107: } 108: 109: Visible Procedure dig_gadd(to, nto, from, nfrom, ffactor) 110: digit *to, *from; intlet nto, nfrom; digit ffactor; { 111: twodigit carry= 0; 112: twodigit factor= ffactor; 113: digit save; 114: 115: nto -= nfrom; 116: if (nto < 0) 117: syserr(MESS(1000, "dig_gadd: nto < nfrom")); 118: for (; nfrom > 0; ++to, ++from, --nfrom) { 119: carry += *to + *from * factor; 120: *to= save= fmodulo(carry, (twodigit)BASE); 121: carry= (carry-save) / BASE; 122: } 123: for (; nto > 0; ++to, --nto) { 124: if (carry == 0) 125: return; 126: carry += *to; 127: *to= save= fmodulo(carry, (twodigit)BASE); 128: carry= (carry-save) / BASE; 129: } 130: if (carry != 0) 131: to[-1] += carry*BASE; /* Assume it's -1 */ 132: } 133: 134: 135: /* Sum or difference of two integers */ 136: /* Should have its own version of dig-gadd without double precision */ 137: 138: Visible integer int_gadd(v, w, factor) integer v, w; intlet factor; { 139: struct integer vv, ww; 140: integer s; 141: int len, lenv, i; 142: 143: FreezeSmallInt(v, vv); 144: FreezeSmallInt(w, ww); 145: lenv= len= Length(v); 146: if (Length(w) > len) 147: len= Length(w); 148: ++len; 149: s= (integer) grab_num(len); 150: for (i= 0; i < lenv; ++i) 151: Digit(s, i)= Digit(v, i); 152: for (; i < len; ++i) 153: Digit(s, i)= 0; 154: dig_gadd(&Digit(s, 0), len, &Digit(w, 0), Length(w), (digit)factor); 155: return int_canon(s); 156: } 157: 158: 159: /* Product of two integers */ 160: 161: Visible integer int_prod(v, w) integer v, w; { 162: int i; 163: integer a; 164: struct integer vv, ww; 165: 166: if (v == int_0 || w == int_0) return int_0; 167: if (v == int_1) return (integer) Copy(w); 168: if (w == int_1) return (integer) Copy(v); 169: 170: FreezeSmallInt(v, vv); 171: FreezeSmallInt(w, ww); 172: 173: a = (integer) grab_num(Length(v) + Length(w)); 174: 175: for (i= Length(a)-1; i >= 0; --i) 176: Digit(a, i)= 0; 177: for (i = 0; i < Length(v) && !interrupted; ++i) 178: dig_gadd(&Digit(a, i), Length(w)+1, &Digit(w, 0), Length(w), 179: Digit(v, i)); 180: 181: return int_canon(a); 182: } 183: 184: 185: /* Compare two integers */ 186: 187: Visible relation int_comp(v, w) integer v, w; { 188: int sv, sw; 189: register int i; 190: struct integer vv, ww; 191: 192: /* 1. Compare pointers and equal SmallInts */ 193: if (v == w) return 0; 194: 195: /* 1a. Handle SmallInts */ 196: if (IsSmallInt(v) && IsSmallInt(w)) 197: return SmallIntVal(v) - SmallIntVal(w); 198: FreezeSmallInt(v, vv); 199: FreezeSmallInt(w, ww); 200: 201: /* 2. Extract signs */ 202: sv = Length(v)==0 ? 0 : Digit(v,Length(v)-1)<0 ? -1 : 1; 203: sw = Length(w)==0 ? 0 : Digit(w,Length(w)-1)<0 ? -1 : 1; 204: 205: /* 3. Compare signs */ 206: if (sv != sw) return (sv>sw) - (sv<sw); 207: 208: /* 4. Compare sizes */ 209: if (Length(v) != Length(w)) 210: return sv * ( (Length(v)>Length(w)) - (Length(v)<Length(w)) ); 211: 212: /* 5. Compare individual digits */ 213: for (i = Length(v)-1; i >= 0 && Digit(v,i) == Digit(w,i); --i) 214: ; 215: 216: /* 6. All digits equal? */ 217: if (i < 0) return 0; /* Yes */ 218: 219: /* 7. Compare leftmost different digits */ 220: if (Digit(v,i) < Digit(w,i)) return -1; 221: 222: return 1; 223: } 224: 225: 226: /* Construct an integer out of a floating point number */ 227: 228: #define GRAN 8 /* Granularity used when requesting more storage */ 229: /* MOVE TO MEM! */ 230: Visible integer mk_int(x) double x; { 231: register integer a; 232: integer b; 233: register int i, j; 234: int negate; 235: 236: if (MinSmallInt <= x && x <= MaxSmallInt) 237: return (integer) MkSmallInt((int)x); 238: 239: a = (integer) grab_num(1); 240: negate = x < 0 ? 1 : 0; 241: if (negate) x = -x; 242: 243: for (i = 0; x != 0; ++i) { 244: double z = floor(x/BASE); 245: digit save = Modulo((digit)(x-z*BASE), BASE); 246: if (i >= Length(a)) { 247: a = (integer) regrab_num((value) a, Length(a)+GRAN); 248: for (j = Length(a)-1; j > i; --j) 249: Digit(a,j) = 0; /* clear higher digits */ 250: } 251: Digit(a,i) = save; 252: x = floor((x-save)/BASE); 253: } 254: 255: if (negate) { 256: b = int_neg(a); 257: release((value) a); 258: return b; 259: } 260: 261: return int_canon(a); 262: } 263: 264: /* Construct an integer out of a C int. Like mk_int, but optimized. */ 265: 266: Visible value mk_integer(x) int x; { 267: if (MinSmallInt <= x && x <= MaxSmallInt) return MkSmallInt(x); 268: return (value) mk_int((double)x); 269: } 270: 271: 272: /* Efficiently compute 10**n as a B integer, where n is a C int >= 0 */ 273: 274: Visible integer int_tento(n) int n; { 275: integer i; 276: digit msd = 1; 277: if (n < 0) syserr(MESS(1001, "int_tento(-n)")); 278: if (n < tenlogBASE) { 279: while (n != 0) msd *= 10, --n; 280: return (integer) MkSmallInt(msd); 281: } 282: i = (integer) grab_num(1 + (int)(n/tenlogBASE)); 283: n %= tenlogBASE; 284: while (n != 0) msd *= 10, --n; 285: Digit(i, Length(i)-1) = msd; 286: return i; 287: } 288: 289: #ifdef NOT_USED 290: /* Approximate ceiling(10 log abs(u/v)), as C int. 291: It only works for v > 0, u, v both integers. 292: The result may be one too large or too small */ 293: 294: Visible int scale(u, v) integer u, v; { 295: int s; 296: double z; 297: struct integer uu, vv; 298: 299: if (Msd(v) <= 0) syserr(MESS(1002, "scale(u,v<=0)")); 300: if (u == int_0) return 0; /* `Don't care' case */ 301: FreezeSmallInt(u, uu); 302: FreezeSmallInt(v, vv); 303: s = (Length(u) - Length(v)) * tenlogBASE; 304: if (Digit(u, Length(u)-1) >= 0) z = Digit(u, Length(u)-1); 305: else { 306: s -= tenlogBASE; 307: if (Length(u) == 1) z = 1; 308: else z = BASE - Digit(u, Length(u)-2); 309: } 310: z /= Digit(v, Length(v)-1); 311: while (z >= 10) z /= 10, ++s; 312: while (z < 1) z *= 10, --s; 313: return s; 314: } 315: #endif NOT_USED