#if defined(DOSCCS) && !defined(lint) static char *sccsid = "@(#)prof.c 4.4.2 (2.11BSD GTE) 1997/2/14"; #endif /* * prof */ #include #include #include #include #include typedef short UNIT; /* unit of profiling */ #ifdef pdp11 #define PCFUDGE 0 #else #define PCFUDGE 11 #endif #define A_OUTNAME "a.out" #define MON_OUTNAME "mon.out" #define MON_SUMNAME "mon.sum" /* * The symbol table; * for each external in the specified file we gather * its address, the number of calls and compute its share of cpu time. */ struct nl { char *name; unsigned value; float time; long ncall; } *nl; int nname; struct nl *np; struct nl *npe; /* * The header on the mon.out file. * Mon.out consists of one of these headers, an array of ncount * cnt structures (as below) and then an array of samples * representing the discretized program counter values. */ struct hdr { UNIT *lowpc, *highpc; int ncount; } h; /* * Each counter has an address and a number of calls. */ struct cnt { unsigned cvalue; long cncall; } *cbuf; /* * Each discretized pc sample has * a count of the number of samples in its range */ unsigned UNIT *samples; FILE *pfile, *nfile; unsigned lowpc, highpc; /* range profiled */ double ransca, ranoff; /* scaling for blowing up plots */ unsigned sampbytes; /* number of bytes of samples */ int nsamples; /* number of samples */ double totime; /* total time for all routines */ double maxtime; /* maximum time of any routine (for plot) */ double scale; /* scale factor converting samples to pc values: each sample covers scale bytes */ char *strtab; /* string table in core */ off_t ssiz; /* size of the string table */ struct xexec xbuf; /* exec header of a.out */ int aflg; int nflg; int vflg; int lflg; int zflg; int sflag; char *namfil; int timcmp(), valcmp(), cntcmp(); main(argc, argv) char **argv; { int lowpct, highpct; /* * Use highpct and lowpc as percentages, temporarily * for graphing options involving blow-up */ lowpct = -1; highpct = -1; argv++; while ( *argv != 0 && **argv == '-' ) { *argv += 1; if (**argv == 'l') lflg++; else if (**argv == 'a') aflg++; else if (**argv == 'n') nflg++; else if (**argv == 'z') zflg++; else if (**argv == 'v') vflg++; else if ( **argv == 's' ) sflag++; else if (**argv >= '0' && **argv <= '9') { int i = atoi(*argv); if (lowpct == -1) lowpct = i; else highpct = i; } argv++; } if ( *argv != 0 ) { namfil = *argv; argv++; } else { namfil = A_OUTNAME; } if (lowpct >= 100) lowpct = 0; if (highpct <= lowpct || highpct > 100) highpct = 100; ransca = 100./(highpct-lowpct); ranoff = 2040. + 40.8*lowpc*ransca; /* * get information about a.out file. */ getnfile(); /* * get information about mon.out file(s). */ if ( *argv == 0 ) { getpfile( MON_OUTNAME ); } else { do { getpfile( *argv ); argv++; } while ( *argv != 0 ); } asgnsamples(); /* assign samples to procedures */ #ifdef plot if (vflg) plotprof(); /* a plotted or ... */ else #endif printprof(); /* a printed profile */ if ( sflag != 0 ) { putprof(); } done(); } printprof() { double time, actime, hz; actime = 0; hz = hertz(); printf(" %%time cumsecs #call ms/call name\n"); if (!lflg) qsort(nl, nname, sizeof(struct nl), timcmp); for (np = nl; nptime == 0 && np->ncall == 0) continue; time = np->time/totime; actime += np->time; printf("%6.1f%9.2f", 100*time, actime/hz); if (np->ncall != 0) printf("%7ld %8.2f", np->ncall, (np->time*1000/hz)/np->ncall); else printf("%7.7s %8.8s", "", ""); printf(" %s\n", np->name); } } /* * Set up string and symbol tables from a.out. * On return symbol table is sorted by value. */ getnfile() { nfile = fopen(namfil,"r"); if (nfile == NULL) { perror(namfil); done(); } fread(&xbuf, 1, sizeof(xbuf), nfile); if (N_BADMAG(xbuf.e)) { fprintf(stderr, "%s: bad format\n", namfil); done(); } getstrtab(); getsymtab(); qsort(nl, nname, sizeof(struct nl), valcmp); } getstrtab() { fseek(nfile, N_STROFF(xbuf), 0); if (fread(&ssiz, sizeof (ssiz), 1, nfile) == 0) { fprintf(stderr, "%s: no string table (old format?)\n", namfil); done(); } strtab = (char *)malloc((int)ssiz); if (strtab == NULL || ssiz > 48 * 1024L) { fprintf(stderr, "%s: no room for %ld bytes of string table", namfil, ssiz); done(); } if (fread(strtab+sizeof(ssiz), (int)ssiz-sizeof(ssiz), 1, nfile) != 1) { fprintf(stderr, "%s: error reading string table\n", namfil); done(); } } /* * Read in symbol table */ getsymtab() { register u_int i; register u_int nsyms; struct nlist nbuf; /* pass1 - count symbols */ fseek(nfile, N_SYMOFF(xbuf), 0); nname = 0; nsyms = xbuf.e.a_syms / sizeof (struct nlist); for (i = 0; i < nsyms; i++) { fread(&nbuf, sizeof(nbuf), 1, nfile); if (nbuf.n_type!=N_TEXT && nbuf.n_type!=N_TEXT+N_EXT) continue; if (aflg==0 && nbuf.n_type!=N_TEXT+N_EXT) continue; nname++; } if (nname == 0) { fprintf(stderr, "%s: no symbols\n", namfil); done(); } nl = (struct nl *)calloc((nname+1), sizeof (struct nl)); if (nl == 0) { fprintf(stderr, "prof: No room for %u bytes of symbol table\n", (nname+1) * sizeof (struct nlist)); done(); } /* pass2 - read symbols */ fseek(nfile, N_SYMOFF(xbuf), 0); npe = nl; for (i = 0; i < nsyms; i++) { fread(&nbuf, sizeof(nbuf), 1, nfile); if (nbuf.n_type!=N_TEXT && nbuf.n_type!=N_TEXT+N_EXT) continue; if (aflg==0 && nbuf.n_type!=N_TEXT+N_EXT) continue; npe->value = nbuf.n_value/sizeof(UNIT); npe->name = strtab+nbuf.n_un.n_strx; npe++; } npe->value = -1; npe++; } /* * information from a mon.out file is in two parts: * the counters of how many times each procedure was called, * if it was called at all; * and an array of sampling hits within pc ranges. * the counters must be dealt with on a file-by-file basis, * since which procedures are represented may vary. * the samples ranges are fixed, but must be summed across * files, and then distributed among procedures, because * of the wierd way the plotting is done. */ getpfile(filename) char *filename; { openpfile(filename); readcntrs(); asgncntrs(); /* assign counts to procedures */ readsamples(); closepfile(); } openpfile(filename) char *filename; { struct stat stb; if((pfile = fopen(filename, "r")) == NULL) { perror(filename); done(); } fstat(fileno(pfile), &stb); fread(&h, sizeof(struct hdr), 1, pfile); lowpc = h.lowpc - (UNIT *)0; highpc = h.highpc - (UNIT *)0; sampbytes = stb.st_size - sizeof(struct hdr) - h.ncount*sizeof(struct cnt); nsamples = sampbytes / sizeof (unsigned UNIT); } closepfile() { fclose(pfile); free(cbuf); } readcntrs() { struct cnt *kp; cbuf = (struct cnt *)calloc((h.ncount+1), sizeof (struct cnt)); if (cbuf == 0) { fprintf(stderr, "prof: No room for %d bytes of count buffer\n", (h.ncount+1) * sizeof (struct cnt)); exit(1); } fread(cbuf, sizeof(struct cnt), h.ncount, pfile); /* eliminate zero counters and scale counter pc values */ if (h.ncount) { kp = &cbuf[h.ncount - 1]; for (;;) { if (kp->cvalue!=0) { ++kp; h.ncount=kp-cbuf; break; } if (kp == cbuf) { h.ncount = 0; break; } --kp; } for (; --kp>=cbuf; ) kp->cvalue /= sizeof(UNIT); } /* sort counters */ qsort(cbuf, h.ncount, sizeof(struct cnt), cntcmp); } /* * Assign counters to the procedures to which they belong */ asgncntrs() { register struct cnt *kp; kp = &cbuf[h.ncount-1]; np = npe; while (--np>=nl) { if (kpvalue > kp->cvalue) continue; /* skip ``static'' functions */ while (kp >= cbuf && kp->cvalue > np->value + PCFUDGE) --kp; if (kp->cvalue >= np->value) { np->ncall += kp->cncall; --kp; } } } readsamples() { register i; unsigned UNIT sample; if (samples == 0) { samples = (unsigned UNIT *) calloc(nsamples, sizeof (unsigned UNIT)); if (samples == 0) { printf("prof: No room for %d sample pc's\n", nsamples); done(); } } for (i = 0; ; i++) { fread(&sample, sizeof (unsigned UNIT), 1, pfile); if (feof(pfile)) break; samples[i] += sample; } if (i != nsamples) { fprintf(stderr, "prof: unexpected EOF after reading %d/%d samples\n", --i, nsamples); done(); } } /* * Assign samples to the procedures to which they belong. */ asgnsamples() { register j; unsigned UNIT ccnt; double time; unsigned pcl, pch; register int i; int overlap; /* read samples and assign to namelist symbols */ scale = highpc - lowpc; scale /= nsamples; for (i=0; i < nsamples; i++) { ccnt = samples[i]; if (ccnt == 0) continue; pcl = lowpc + scale*i; pch = lowpc + scale*(i+1); time = ccnt; totime += time; if(time > maxtime) maxtime = time; for (j=0; j= nl[j+1].value) continue; overlap=(min(pch,nl[j+1].value)-max(pcl,nl[j].value)); if (overlap>0) nl[j].time += overlap*time/scale; } } if (totime==0.0) { fprintf(stderr, "No time accumulated\n"); /* done(); */ totime=1.0; } } /* * dump what you have out to a mon.out style file. */ putprof() { FILE *sfile; register struct nl *np; struct cnt kp; sfile = fopen(MON_SUMNAME, "w"); if (sfile == NULL) { perror(MON_SUMNAME); done(); } /* * build a new header. * h.lowpc and h.highpc are already fine. * fix h.ncount to count non-zero calls, * and the one zero call which marks the end. */ h.ncount = 0; for (np = nl; np < npe-1 ; np++) if (np->ncall > 0) h.ncount++; h.ncount++; fwrite(&h, sizeof (struct hdr), 1, sfile); for (np = nl; np < npe-1; np++) { if (np->ncall > 0) { kp.cvalue = np->value * sizeof (unsigned UNIT); kp.cncall = np->ncall; fwrite(&kp, sizeof (struct cnt), 1, sfile); } } kp.cvalue = 0; kp.cncall = 0; fwrite(&kp, sizeof (struct cnt), 1, sfile); fwrite(samples, sizeof (unsigned UNIT), nsamples, sfile); fclose(sfile); } #include /* * discover the tick frequency of the machine * if something goes wrong, we return 1. */ hertz() { int size, mib[2]; struct clockinfo cinfo; mib[0] = CTL_KERN; mib[1] = KERN_CLOCKRATE; size = sizeof (struct clockinfo); if (sysctl(mib, 2, &cinfo, &size, NULL, 0) < 0) return(1); return(cinfo.hz); } min(a, b) { if (ab) return(a); return(b); } valcmp(p1, p2) struct nl *p1, *p2; { return(p1->value - p2->value); } timcmp(p1, p2) struct nl *p1, *p2; { float d; if (nflg && p2->ncall != p1->ncall) { if (p2->ncall < p1->ncall) return(-1); else if (p2->ncall > p1->ncall) return(1); return(0); } d = p2->time - p1->time; if (d > 0.0) return(1); if (d < 0.0) return(-1); return(strcmp(p1->name,p2->name)); } cntcmp(p1, p2) struct cnt *p1, *p2; { return(p1->cvalue - p2->cvalue); } done() { #ifdef plot if(vflg) { point(0, -2040); closepl(); } #endif exit(0); } #ifdef plot plotprof() { double time, lastx, lasty, lastsx; register i; openpl(); erase(); space(-2048, -2048, 2048, 2048); line(-2040, -2040, -2040, 2040); line(0, 2040, 0, -2040); for(i=0; i<11; i++) line(-2040, 2040-i*408, 0, 2040-i*408); lastx = 0.; lasty = ranoff; scale = (4080.*ransca)/nsamples; lastsx = 0.0; for(i = 0; i < nsamples; i++) { unsigned UNIT ccnt; double tx, ty; ccnt = samples[i]; time = ccnt; tx = lastsx; ty = lasty; lastsx -= 2000.*time/totime; lasty -= scale; if(lasty >= -2040. && ty <= 2040.) { line((int)tx, (int)ty, (int)lastsx, (int)lasty); if (ccnt!=0 || lastx!=0.0) { tx = lastx; lastx = -time*2000./maxtime; ty += scale/2; line(0, (int)ty, (int)tx, (int)ty); } } } scale = (4080.*ransca)/(highpc-lowpc); lastx = 50.; for(np = nl; npvalue < lowpc) continue; if(np->value >= highpc) break; if(zflg == 0 && np->time == 0 && np->ncall == 0) continue; time = np->time/totime; lasty = ranoff - (np->value - lowpc)*scale; if(lasty >= -2040. && lasty <= 2040.) { char bufl[BUFSIZ]; register j; line(0, (int)lasty, 50, (int)lasty); line((int)(lastx-50),(int)lasty,(int)lastx,(int)lasty); move((int)(lastx+30), (int)(lasty+10)); sprintf(bufl, "%s", np->name + (np->name[0] == '_')); label(bufl); } lastx += 500.; if(lastx > 2000.) lastx = 50.; } } #endif