/* * Copyright (c) 1986 Regents of the University of California. * All rights reserved. The Berkeley software License Agreement * specifies the terms and conditions for redistribution. * * @(#)ufs_bio.c 2.2 (2.11BSD) 1996/9/13 */ #include "param.h" #include "buf.h" #include "user.h" #include "conf.h" #include "fs.h" #include "dk.h" #include "systm.h" #include "map.h" #include "uba.h" #include "trace.h" #include "ram.h" /* * Read in (if necessary) the block and return a buffer pointer. */ struct buf * bread(dev, blkno) dev_t dev; daddr_t blkno; { register struct buf *bp; bp = getblk(dev, blkno); if (bp->b_flags&(B_DONE|B_DELWRI)) { trace(TR_BREADHIT); return (bp); } bp->b_flags |= B_READ; bp->b_bcount = DEV_BSIZE; /* XXX? KB */ (*bdevsw[major(dev)].d_strategy)(bp); trace(TR_BREADMISS); u.u_ru.ru_inblock++; /* pay for read */ biowait(bp); return(bp); } /* * Read in the block, like bread, but also start I/O on the * read-ahead block (which is not allocated to the caller) */ struct buf * breada(dev, blkno, rablkno) register dev_t dev; daddr_t blkno; daddr_t rablkno; { register struct buf *bp, *rabp; bp = NULL; /* * If the block isn't in core, then allocate * a buffer and initiate i/o (getblk checks * for a cache hit). */ if (!incore(dev, blkno)) { bp = getblk(dev, blkno); if ((bp->b_flags&(B_DONE|B_DELWRI)) == 0) { bp->b_flags |= B_READ; bp->b_bcount = DEV_BSIZE; /* XXX? KB */ (*bdevsw[major(dev)].d_strategy)(bp); trace(TR_BREADMISS); u.u_ru.ru_inblock++; /* pay for read */ } else trace(TR_BREADHIT); } /* * If there's a read-ahead block, start i/o * on it also (as above). */ if (rablkno) { if (!incore(dev, rablkno)) { rabp = getblk(dev, rablkno); if (rabp->b_flags & (B_DONE|B_DELWRI)) { brelse(rabp); trace(TR_BREADHITRA); } else { rabp->b_flags |= B_READ|B_ASYNC; rabp->b_bcount = DEV_BSIZE; /* XXX? KB */ (*bdevsw[major(dev)].d_strategy)(rabp); trace(TR_BREADMISSRA); u.u_ru.ru_inblock++; /* pay in advance */ } } else trace(TR_BREADHITRA); } /* * If block was in core, let bread get it. * If block wasn't in core, then the read was started * above, and just wait for it. */ if (bp == NULL) return (bread(dev, blkno)); biowait(bp); return (bp); } /* * Write the buffer, waiting for completion. * Then release the buffer. */ bwrite(bp) register struct buf *bp; { register flag; flag = bp->b_flags; bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI); if ((flag&B_DELWRI) == 0) u.u_ru.ru_oublock++; /* noone paid yet */ trace(TR_BWRITE); bp->b_bcount = DEV_BSIZE; /* XXX? KB */ (*bdevsw[major(bp->b_dev)].d_strategy)(bp); /* * If the write was synchronous, then await i/o completion. * If the write was "delayed", then we put the buffer on * the q of blocks awaiting i/o completion status. */ if ((flag&B_ASYNC) == 0) { biowait(bp); brelse(bp); } else if (flag & B_DELWRI) bp->b_flags |= B_AGE; } /* * Release the buffer, marking it so that if it is grabbed * for another purpose it will be written out before being * given up (e.g. when writing a partial block where it is * assumed that another write for the same block will soon follow). * This can't be done for magtape, since writes must be done * in the same order as requested. */ bdwrite(bp) register struct buf *bp; { if ((bp->b_flags&B_DELWRI) == 0) u.u_ru.ru_oublock++; /* noone paid yet */ if (bdevsw[major(bp->b_dev)].d_flags & B_TAPE) { bawrite(bp); } else { bp->b_flags |= B_DELWRI | B_DONE; brelse(bp); } } /* * Release the buffer, with no I/O implied. */ brelse(bp) register struct buf *bp; { register struct buf *flist; register s; trace(TR_BRELSE); /* * If someone's waiting for the buffer, or * is waiting for a buffer, wake 'em up. */ if (bp->b_flags&B_WANTED) wakeup((caddr_t)bp); if (bfreelist[0].b_flags&B_WANTED) { bfreelist[0].b_flags &= ~B_WANTED; wakeup((caddr_t)bfreelist); } if (bp->b_flags&B_ERROR) if (bp->b_flags & B_LOCKED) bp->b_flags &= ~B_ERROR; /* try again later */ else bp->b_dev = NODEV; /* no assoc */ /* * Stick the buffer back on a free list. */ s = splbio(); if (bp->b_flags & (B_ERROR|B_INVAL)) { /* block has no info ... put at front of most free list */ flist = &bfreelist[BQ_AGE]; binsheadfree(bp, flist); } else { if (bp->b_flags & B_LOCKED) flist = &bfreelist[BQ_LOCKED]; else if (bp->b_flags & B_AGE) flist = &bfreelist[BQ_AGE]; else flist = &bfreelist[BQ_LRU]; binstailfree(bp, flist); } bp->b_flags &= ~(B_WANTED|B_BUSY|B_ASYNC|B_AGE); splx(s); } /* * See if the block is associated with some buffer * (mainly to avoid getting hung up on a wait in breada) */ incore(dev, blkno) register dev_t dev; daddr_t blkno; { register struct buf *bp; register struct buf *dp; dp = BUFHASH(dev, blkno); blkno = fsbtodb(blkno); for (bp = dp->b_forw; bp != dp; bp = bp->b_forw) if (bp->b_blkno == blkno && bp->b_dev == dev && (bp->b_flags & B_INVAL) == 0) return (1); return (0); } /* * Assign a buffer for the given block. If the appropriate * block is already associated, return it; otherwise search * for the oldest non-busy buffer and reassign it. * * We use splx here because this routine may be called * on the interrupt stack during a dump, and we don't * want to lower the ipl back to 0. */ struct buf * getblk(dev, blkno) register dev_t dev; daddr_t blkno; { register struct buf *bp, *dp; daddr_t dblkno; int s; #ifdef DIAGNOSTIC if (major(dev) >= nblkdev) panic("blkdev"); #endif /* * Search the cache for the block. If we hit, but * the buffer is in use for i/o, then we wait until * the i/o has completed. */ dp = BUFHASH(dev, blkno); dblkno = fsbtodb(blkno); loop: for (bp = dp->b_forw; bp != dp; bp = bp->b_forw) { if (bp->b_blkno != dblkno || bp->b_dev != dev || bp->b_flags&B_INVAL) continue; s = splbio(); if (bp->b_flags&B_BUSY) { bp->b_flags |= B_WANTED; sleep((caddr_t)bp, PRIBIO+1); splx(s); goto loop; } splx(s); notavail(bp); return (bp); } bp = getnewbuf(); bfree(bp); bremhash(bp); binshash(bp, dp); bp->b_dev = dev; bp->b_blkno = dblkno; bp->b_error = 0; return (bp); } /* * get an empty block, * not assigned to any particular device */ struct buf * geteblk() { register struct buf *bp, *flist; bp = getnewbuf(); bp->b_flags |= B_INVAL; bfree(bp); bremhash(bp); flist = &bfreelist[BQ_AGE]; binshash(bp, flist); bp->b_dev = (dev_t)NODEV; bp->b_error = 0; return (bp); } /* * Find a buffer which is available for use. * Select something from a free list. * Preference is to AGE list, then LRU list. */ struct buf * getnewbuf() { register struct buf *bp, *dp; int s; loop: s = splbio(); for (dp = &bfreelist[BQ_AGE]; dp > bfreelist; dp--) if (dp->av_forw != dp) break; if (dp == bfreelist) { /* no free blocks */ dp->b_flags |= B_WANTED; sleep((caddr_t)dp, PRIBIO+1); splx(s); goto loop; } splx(s); bp = dp->av_forw; notavail(bp); if (bp->b_flags & B_DELWRI) { bawrite(bp); goto loop; } if(bp->b_flags & (B_RAMREMAP|B_PHYS)) { register memaddr paddr; /* click address of real buffer */ extern memaddr bpaddr; #ifdef DIAGNOSTIC if ((bp < &buf[0]) || (bp >= &buf[nbuf])) panic("getnewbuf: RAMREMAP bp addr"); #endif paddr = bpaddr + btoc(DEV_BSIZE) * (bp - buf); bp->b_un.b_addr = (caddr_t)(paddr << 6); bp->b_xmem = (paddr >> 10) & 077; } trace(TR_BRELSE); bp->b_flags = B_BUSY; return (bp); } /* * Wait for I/O completion on the buffer; return errors * to the user. */ biowait(bp) register struct buf *bp; { register int s; s = splbio(); while ((bp->b_flags&B_DONE)==0) sleep((caddr_t)bp, PRIBIO); splx(s); if (!u.u_error) /* XXX */ u.u_error = geterror(bp); } /* * Mark I/O complete on a buffer. * Wake up anyone waiting for it. */ biodone(bp) register struct buf *bp; { if (bp->b_flags & B_DONE) panic("dup biodone"); if (bp->b_flags & (B_MAP|B_UBAREMAP)) mapfree(bp); bp->b_flags |= B_DONE; if (bp->b_flags&B_ASYNC) brelse(bp); else { bp->b_flags &= ~B_WANTED; wakeup((caddr_t)bp); } } /* * Insure that no part of a specified block is in an incore buffer. */ blkflush(dev, blkno) register dev_t dev; daddr_t blkno; { register struct buf *ep; struct buf *dp; register int s; dp = BUFHASH(dev, blkno); blkno = fsbtodb(blkno); loop: for (ep = dp->b_forw; ep != dp; ep = ep->b_forw) { if (ep->b_blkno != blkno || ep->b_dev != dev || (ep->b_flags&B_INVAL)) continue; s = splbio(); if (ep->b_flags&B_BUSY) { ep->b_flags |= B_WANTED; sleep((caddr_t)ep, PRIBIO+1); splx(s); goto loop; } if (ep->b_flags & B_DELWRI) { splx(s); notavail(ep); bwrite(ep); goto loop; } splx(s); } } /* * Make sure all write-behind blocks on dev are flushed out. * (from umount and sync) */ bflush(dev) register dev_t dev; { register struct buf *bp; register struct buf *flist; int s; loop: s = splbio(); for (flist = bfreelist; flist < &bfreelist[BQ_EMPTY]; flist++) for (bp = flist->av_forw; bp != flist; bp = bp->av_forw) { if ((bp->b_flags & B_DELWRI) == 0) continue; if (dev == bp->b_dev) { bp->b_flags |= B_ASYNC; notavail(bp); bwrite(bp); splx(s); goto loop; } } splx(s); } /* * Pick up the device's error number and pass it to the user; * if there is an error but the number is 0 set a generalized code. */ geterror(bp) register struct buf *bp; { register int error = 0; if (bp->b_flags&B_ERROR) if ((error = bp->b_error)==0) return(EIO); return (error); } /* * Invalidate in core blocks belonging to closed or umounted filesystem * * This is not nicely done at all - the buffer ought to be removed from the * hash chains & have its dev/blkno fields clobbered, but unfortunately we * can't do that here, as it is quite possible that the block is still * being used for i/o. Eventually, all disc drivers should be forced to * have a close routine, which ought ensure that the queue is empty, then * properly flush the queues. Until that happy day, this suffices for * correctness. ... kre */ binval(dev) register dev_t dev; { register struct buf *bp; register struct bufhd *hp; #define dp ((struct buf *)hp) for (hp = bufhash; hp < &bufhash[BUFHSZ]; hp++) for (bp = dp->b_forw; bp != dp; bp = bp->b_forw) if (bp->b_dev == dev) bp->b_flags |= B_INVAL; }