static char Sccsid[] = "gamma.c @(#)gamma.c 1.1 10/1/82 Berkeley "; /* C program for floating point log gamma function gamma(x) computes the log of the absolute value of the gamma function. The sign of the gamma function is returned in the external quantity signgam. The coefficients for expansion around zero are #5243 from Hart & Cheney; for expansion around infinity they are #5404. Calls log and sin. */ #include #include int errno; int signgam = 0; static double goobie = 0.9189385332046727417803297; static double pi = 3.1415926535897932384626434; #define M 6 #define N 8 static double p1[] = { 0.83333333333333101837e-1, -.277777777735865004e-2, 0.793650576493454e-3, -.5951896861197e-3, 0.83645878922e-3, -.1633436431e-2, }; static double p2[] = { -.42353689509744089647e5, -.20886861789269887364e5, -.87627102978521489560e4, -.20085274013072791214e4, -.43933044406002567613e3, -.50108693752970953015e2, -.67449507245925289918e1, 0.0, }; static double q2[] = { -.42353689509744090010e5, -.29803853309256649932e4, 0.99403074150827709015e4, -.15286072737795220248e4, -.49902852662143904834e3, 0.18949823415702801641e3, -.23081551524580124562e2, 0.10000000000000000000e1, }; double gamma(arg) double arg; { double log(), pos(), neg(), asym(); signgam = 1.; if(arg <= 0.) return(neg(arg)); if(arg > 8.) return(asym(arg)); return(log(pos(arg))); } static double asym(arg) double arg; { double log(); double n, argsq; int i; argsq = 1./(arg*arg); for(n=0,i=M-1; i>=0; i--){ n = n*argsq + p1[i]; } return((arg-.5)*log(arg) - arg + goobie + n/arg); } static double neg(arg) double arg; { double temp; double log(), sin(), pos(); arg = -arg; temp = sin(pi*arg); if(temp == 0.) { errno = EDOM; return(HUGE); } if(temp < 0.) temp = -temp; else signgam = -1; return(-log(arg*pos(arg)*temp/pi)); } static double pos(arg) double arg; { double n, d, s; register i; if(arg < 2.) return(pos(arg+1.)/arg); if(arg > 3.) return((arg-1.)*pos(arg-1.)); s = arg - 2.; for(n=0,d=0,i=N-1; i>=0; i--){ n = n*s + p2[i]; d = d*s + q2[i]; } return(n/d); }