1: #include <stdio.h> 2: 3: #define NP 1000 4: #define INF 1.e37 5: 6: struct proj { int lbf,ubf; float a,b,lb,ub,quant,mult,val[NP]; } x,y; 7: float *diag, *r; 8: float dx = 1.; 9: float ni = 100.; 10: int n; 11: int auta; 12: int periodic; 13: float konst = 0.0; 14: float zero = 0.; 15: 16: /* Spline fit technique 17: let x,y be vectors of abscissas and ordinates 18: h be vector of differences h9i8=x9i8-x9i-1988 19: y" be vector of 2nd derivs of approx function 20: If the points are numbered 0,1,2,...,n+1 then y" satisfies 21: (R W Hamming, Numerical Methods for Engineers and Scientists, 22: 2nd Ed, p349ff) 23: h9i8y"9i-1988+2(h9i8+h9i+18)y"9i8+h9i+18y"9i+18 24: 25: = 6[(y9i+18-y9i8)/h9i+18-(y9i8-y9i-18)/h9i8] i=1,2,...,n 26: 27: where y"908 = y"9n+18 = 0 28: This is a symmetric tridiagonal system of the form 29: 30: | a918 h928 | |y"918| |b918| 31: | h928 a928 h938 | |y"928| |b928| 32: | h938 a938 h948 | |y"938| = |b938| 33: | . | | .| | .| 34: | . | | .| | .| 35: It can be triangularized into 36: | d918 h928 | |y"918| |r918| 37: | d928 h938 | |y"928| |r928| 38: | d938 h948 | |y"938| = |r938| 39: | . | | .| | .| 40: | . | | .| | .| 41: where 42: d918 = a918 43: 44: r908 = 0 45: 46: d9i8 = a9i8 - h9i8829/d9i-18 1<i<_n 47: 48: r9i8 = b9i8 - h9i8r9i-18/d9i-1i8 1<_i<_n 49: 50: the back solution is 51: y"9n8 = r9n8/d9n8 52: 53: y"9i8 = (r9i8-h9i+18y"9i+18)/d9i8 1<_i<n 54: 55: superficially, d9i8 and r9i8 don't have to be stored for they can be 56: recalculated backward by the formulas 57: 58: d9i-18 = h9i8829/(a9i8-d9i8) 1<i<_n 59: 60: r9i-18 = (b9i8-r9i8)d9i-18/h9i8 1<i<_n 61: 62: unhappily it turns out that the recursion forward for d 63: is quite strongly geometrically convergent--and is wildly 64: unstable going backward. 65: There's similar trouble with r, so the intermediate 66: results must be kept. 67: 68: Note that n-1 in the program below plays the role of n+1 in the theory 69: 70: Other boundary conditions_________________________ 71: 72: The boundary conditions are easily generalized to handle 73: 74: y908" = ky918", y9n+18" = ky9n8" 75: 76: for some constant k. The above analysis was for k = 0; 77: k = 1 fits parabolas perfectly as well as stright lines; 78: k = 1/2 has been recommended as somehow pleasant. 79: 80: All that is necessary is to add h918 to a918 and h9n+18 to a9n8. 81: 82: 83: Periodic case_____________ 84: 85: To do this, add 1 more row and column thus 86: 87: | a918 h928 h918 | |y918"| |b918| 88: | h928 a928 h938 | |y928"| |b928| 89: | h938 a948 h948 | |y938"| |b938| 90: | | | .| = | .| 91: | . | | .| | .| 92: | h918 h908 a908 | | .| | .| 93: 94: where h908=_ h9n+18 95: 96: The same diagonalization procedure works, except for 97: the effect of the 2 corner elements. Let s9i8 be the part 98: of the last element in the i8th9 "diagonalized" row that 99: arises from the extra top corner element. 100: 101: s918 = h918 102: 103: s9i8 = -s9i-18h9i8/d9i-18 2<_i<_n+1 104: 105: After "diagonalizing", the lower corner element remains. 106: Call t9i8 the bottom element that appears in the i8th9 colomn 107: as the bottom element to its left is eliminated 108: 109: t918 = h918 110: 111: t9i8 = -t9i-18h9i8/d9i-18 112: 113: Evidently t9i8 = s9i8. 114: Elimination along the bottom row 115: introduces further corrections to the bottom right element 116: and to the last element of the right hand side. 117: Call these corrections u and v. 118: 119: u918 = v918 = 0 120: 121: u9i8 = u9i-18-s9i-18*t9i-18/d9i-18 122: 123: v9i8 = v9i-18-r9i-18*t9i-18/d9i-18 2<_i<_n+1 124: 125: The back solution is now obtained as follows 126: 127: y"9n+18 = (r9n+18+v9n+18)/(d9n+18+s9n+18+t9n+18+u9n+18) 128: 129: y"9i8 = (r9i8-h9i+18*y9i+18-s9i8*y9n+18)/d9i8 1<_i<_n 130: 131: Interpolation in the interval x9i8<_x<_x9i+18 is by the formula 132: 133: y = y9i8x9+8 + y9i+18x9-8 -(h8299i+18/6)[y"9i8(x9+8-x9+8839)+y"9i+18(x9-8-x9-8839)] 134: where 135: x9+8 = x9i+18-x 136: 137: x9-8 = x-x9i8 138: */ 139: 140: float 141: rhs(i){ 142: int i_; 143: double zz; 144: i_ = i==n-1?0:i; 145: zz = (y.val[i]-y.val[i-1])/(x.val[i]-x.val[i-1]); 146: return(6*((y.val[i_+1]-y.val[i_])/(x.val[i+1]-x.val[i]) - zz)); 147: } 148: 149: spline(){ 150: float d,s,u,v,hi,hi1; 151: float h; 152: float D2yi,D2yi1,D2yn1,x0,x1,yy,a; 153: int end; 154: float corr; 155: int i,j,m; 156: if(n<3) return(0); 157: if(periodic) konst = 0; 158: d = 1; 159: r[0] = 0; 160: s = periodic?-1:0; 161: for(i=0;++i<n-!periodic;){ /* triangularize */ 162: hi = x.val[i]-x.val[i-1]; 163: hi1 = i==n-1?x.val[1]-x.val[0]: 164: x.val[i+1]-x.val[i]; 165: if(hi1*hi<=0) return(0); 166: u = i==1?zero:u-s*s/d; 167: v = i==1?zero:v-s*r[i-1]/d; 168: r[i] = rhs(i)-hi*r[i-1]/d; 169: s = -hi*s/d; 170: a = 2*(hi+hi1); 171: if(i==1) a += konst*hi; 172: if(i==n-2) a += konst*hi1; 173: diag[i] = d = i==1? a: 174: a - hi*hi/d; 175: } 176: D2yi = D2yn1 = 0; 177: for(i=n-!periodic;--i>=0;){ /* back substitute */ 178: end = i==n-1; 179: hi1 = end?x.val[1]-x.val[0]: 180: x.val[i+1]-x.val[i]; 181: D2yi1 = D2yi; 182: if(i>0){ 183: hi = x.val[i]-x.val[i-1]; 184: corr = end?2*s+u:zero; 185: D2yi = (r[i]-hi1*D2yi1-s*D2yn1+end*v)/ 186: (diag[i]+corr); 187: if(end) D2yn1 = D2yi; 188: if(i>1){ 189: a = 2*(hi+hi1); 190: if(i==1) a += konst*hi; 191: if(i==n-2) a += konst*hi1; 192: d = diag[i-1]; 193: s = -s*d/hi; 194: }} 195: else D2yi = D2yn1; 196: if(!periodic) { 197: if(i==0) D2yi = konst*D2yi1; 198: if(i==n-2) D2yi1 = konst*D2yi; 199: } 200: if(end) continue; 201: m = hi1>0?ni:-ni; 202: m = 1.001*m*hi1/(x.ub-x.lb); 203: if(m<=0) m = 1; 204: h = hi1/m; 205: for(j=m;j>0||i==0&&j==0;j--){ /* interpolate */ 206: x0 = (m-j)*h/hi1; 207: x1 = j*h/hi1; 208: yy = D2yi*(x0-x0*x0*x0)+D2yi1*(x1-x1*x1*x1); 209: yy = y.val[i]*x0+y.val[i+1]*x1 -hi1*hi1*yy/6; 210: printf("%f ",x.val[i]+j*h); 211: printf("%f\n",yy); 212: } 213: } 214: return(1); 215: } 216: readin() { 217: for(n=0;n<NP;n++){ 218: if(auta) x.val[n] = n*dx+x.lb; 219: else if(!getfloat(&x.val[n])) break; 220: if(!getfloat(&y.val[n])) break; } } 221: 222: getfloat(p) 223: float *p;{ 224: char buf[30]; 225: register c; 226: int i; 227: extern double atof(); 228: for(;;){ 229: c = getchar(); 230: if (c==EOF) { 231: *buf = '\0'; 232: return(0); 233: } 234: *buf = c; 235: switch(*buf){ 236: case ' ': 237: case '\t': 238: case '\n': 239: continue;} 240: break;} 241: for(i=1;i<30;i++){ 242: c = getchar(); 243: if (c==EOF) { 244: buf[i] = '\0'; 245: break; 246: } 247: buf[i] = c; 248: if('0'<=c && c<='9') continue; 249: switch(c) { 250: case '.': 251: case '+': 252: case '-': 253: case 'E': 254: case 'e': 255: continue;} 256: break; } 257: buf[i] = ' '; 258: *p = atof(buf); 259: return(1); } 260: 261: getlim(p) 262: struct proj *p; { 263: int i; 264: for(i=0;i<n;i++) { 265: if(!p->lbf && p->lb>(p->val[i])) p->lb = p->val[i]; 266: if(!p->ubf && p->ub<(p->val[i])) p->ub = p->val[i]; } 267: } 268: 269: 270: main(argc,argv) 271: char *argv[];{ 272: extern char *malloc(); 273: int i; 274: x.lbf = x.ubf = y.lbf = y.ubf = 0; 275: x.lb = INF; 276: x.ub = -INF; 277: y.lb = INF; 278: y.ub = -INF; 279: while(--argc > 0) { 280: argv++; 281: again: switch(argv[0][0]) { 282: case '-': 283: argv[0]++; 284: goto again; 285: case 'a': 286: auta = 1; 287: numb(&dx,&argc,&argv); 288: break; 289: case 'k': 290: numb(&konst,&argc,&argv); 291: break; 292: case 'n': 293: numb(&ni,&argc,&argv); 294: break; 295: case 'p': 296: periodic = 1; 297: break; 298: case 'x': 299: if(!numb(&x.lb,&argc,&argv)) break; 300: x.lbf = 1; 301: if(!numb(&x.ub,&argc,&argv)) break; 302: x.ubf = 1; 303: break; 304: default: 305: fprintf(stderr, "Bad agrument\n"); 306: exit(1); 307: } 308: } 309: if(auta&&!x.lbf) x.lb = 0; 310: readin(); 311: getlim(&x); 312: getlim(&y); 313: i = (n+1)*sizeof(dx); 314: diag = (float *)malloc((unsigned)i); 315: r = (float *)malloc((unsigned)i); 316: if(r==NULL||!spline()) for(i=0;i<n;i++){ 317: printf("%f ",x.val[i]); 318: printf("%f\n",y.val[i]); } 319: } 320: numb(np,argcp,argvp) 321: int *argcp; 322: float *np; 323: char ***argvp;{ 324: double atof(); 325: char c; 326: if(*argcp<=1) return(0); 327: c = (*argvp)[1][0]; 328: if(!('0'<=c&&c<='9' || c=='-' || c== '.' )) return(0); 329: *np = atof((*argvp)[1]); 330: (*argcp)--; 331: (*argvp)++; 332: return(1); }