/* * Copyright (c) 1985 Regents of the University of California. * * Use and reproduction of this software are granted in accordance with * the terms and conditions specified in the Berkeley Software License * Agreement (in particular, this entails acknowledgement of the programs' * source, and inclusion of this notice) with the additional understanding * that all recipients should regard themselves as participants in an * ongoing research project and hence should feel obligated to report * their experiences (good or bad) with these elementary function codes, * using "sendbug 4bsd-bugs@BERKELEY", to the authors. */ #ifndef lint static char sccsid[] = "@(#)log.c 4.5 (Berkeley) 8/21/85"; #endif not lint /* LOG(X) * RETURN THE LOGARITHM OF x * DOUBLE PRECISION (VAX D FORMAT 56 bits or IEEE DOUBLE 53 BITS) * CODED IN C BY K.C. NG, 1/19/85; * REVISED BY K.C. NG on 2/7/85, 3/7/85, 3/24/85, 4/16/85. * * Required system supported functions: * scalb(x,n) * copysign(x,y) * logb(x) * finite(x) * * Required kernel function: * log__L(z) * * Method : * 1. Argument Reduction: find k and f such that * x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * log(1+f) is computed by * * log(1+f) = 2s + s*log__L(s*s) * where * log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...))) * * See log__L() for the values of the coefficients. * * 3. Finally, log(x) = k*ln2 + log(1+f). (Here n*ln2 will be stored * in two floating point number: n*ln2hi + n*ln2lo, n*ln2hi is exact * since the last 20 bits of ln2hi is 0.) * * Special cases: * log(x) is NaN with signal if x < 0 (including -INF) ; * log(+INF) is +INF; log(0) is -INF with signal; * log(NaN) is that NaN with no signal. * * Accuracy: * log(x) returns the exact log(x) nearly rounded. In a test run with * 1,536,000 random arguments on a VAX, the maximum observed error was * .826 ulps (units in the last place). * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */ #ifdef VAX /* VAX D format */ #include /* double static */ /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */ /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */ /* sqrt2 = 1.4142135623730950622E0 ; Hex 2^ 1 * .B504F333F9DE65 */ static long ln2hix[] = { 0x72174031, 0x0000f7d0}; static long ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1}; static long sqrt2x[] = { 0x04f340b5, 0xde6533f9}; #define ln2hi (*(double*)ln2hix) #define ln2lo (*(double*)ln2lox) #define sqrt2 (*(double*)sqrt2x) #else /* IEEE double */ double static ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */ sqrt2 = 1.4142135623730951455E0 ; /*Hex 2^ 0 * 1.6A09E667F3BCD */ #endif double log(x) double x; { static double zero=0.0, negone= -1.0, half=1.0/2.0; double logb(),scalb(),copysign(),log__L(),s,z,t; int k,n,finite(); #ifndef VAX if(x!=x) return(x); /* x is NaN */ #endif if(finite(x)) { if( x > zero ) { /* argument reduction */ k=logb(x); x=scalb(x,-k); if(k == -1022) /* subnormal no. */ {n=logb(x); x=scalb(x,-n); k+=n;} if(x >= sqrt2 ) {k += 1; x *= half;} x += negone ; /* compute log(1+x) */ s=x/(2+x); t=x*x*half; z=k*ln2lo+s*(t+log__L(s*s)); x += (z - t) ; return(k*ln2hi+x); } /* end of if (x > zero) */ else { #ifdef VAX extern double infnan(); if ( x == zero ) return (infnan(-ERANGE)); /* -INF */ else return (infnan(EDOM)); /* NaN */ #else /* IEEE double */ /* zero argument, return -INF with signal */ if ( x == zero ) return( negone/zero ); /* negative argument, return NaN with signal */ else return ( zero / zero ); #endif } } /* end of if (finite(x)) */ /* NOT REACHED ifdef VAX */ /* log(-INF) is NaN with signal */ else if (x<0) return(zero/zero); /* log(+INF) is +INF */ else return(x); }