/* * Copyright (c) 1985 Regents of the University of California. * * Use and reproduction of this software are granted in accordance with * the terms and conditions specified in the Berkeley Software License * Agreement (in particular, this entails acknowledgement of the programs' * source, and inclusion of this notice) with the additional understanding * that all recipients should regard themselves as participants in an * ongoing research project and hence should feel obligated to report * their experiences (good or bad) with these elementary function codes, * using "sendbug 4bsd-bugs@BERKELEY", to the authors. */ #ifndef lint static char sccsid[] = "@(#)exp__E.c 1.2 (Berkeley) 8/21/85"; #endif not lint /* exp__E(x,c) * ASSUMPTION: c << x SO THAT fl(x+c)=x. * (c is the correction term for x) * exp__E RETURNS * * / exp(x+c) - 1 - x , 1E-19 < |x| < .3465736 * exp__E(x,c) = | * \ 0 , |x| < 1E-19. * * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS) * KERNEL FUNCTION OF EXP, EXPM1, POW FUNCTIONS * CODED IN C BY K.C. NG, 1/31/85; * REVISED BY K.C. NG on 3/16/85, 4/16/85. * * Required system supported function: * copysign(x,y) * * Method: * 1. Rational approximation. Let r=x+c. * Based on * 2 * sinh(r/2) * exp(r) - 1 = ---------------------- , * cosh(r/2) - sinh(r/2) * exp__E(r) is computed using * x*x (x/2)*W - ( Q - ( 2*P + x*P ) ) * --- + (c + x*[---------------------------------- + c ]) * 2 1 - W * where P := p1*x^2 + p2*x^4, * Q := q1*x^2 + q2*x^4 (for 56 bits precision, add q3*x^6) * W := x/2-(Q-x*P), * * (See the listing below for the values of p1,p2,q1,q2,q3. The poly- * nomials P and Q may be regarded as the approximations to sinh * and cosh : * sinh(r/2) = r/2 + r * P , cosh(r/2) = 1 + Q . ) * * The coefficients were obtained by a special Remez algorithm. * * Approximation error: * * | exp(x) - 1 | 2**(-57), (IEEE double) * | ------------ - (exp__E(x,0)+x)/x | <= * | x | 2**(-69). (VAX D) * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */ #ifdef VAX /* VAX D format */ /* static double */ /* p1 = 1.5150724356786683059E-2 , Hex 2^ -6 * .F83ABE67E1066A */ /* p2 = 6.3112487873718332688E-5 , Hex 2^-13 * .845B4248CD0173 */ /* q1 = 1.1363478204690669916E-1 , Hex 2^ -3 * .E8B95A44A2EC45 */ /* q2 = 1.2624568129896839182E-3 , Hex 2^ -9 * .A5790572E4F5E7 */ /* q3 = 1.5021856115869022674E-6 ; Hex 2^-19 * .C99EB4604AC395 */ static long p1x[] = { 0x3abe3d78, 0x066a67e1}; static long p2x[] = { 0x5b423984, 0x017348cd}; static long q1x[] = { 0xb95a3ee8, 0xec4544a2}; static long q2x[] = { 0x79053ba5, 0xf5e772e4}; static long q3x[] = { 0x9eb436c9, 0xc395604a}; #define p1 (*(double*)p1x) #define p2 (*(double*)p2x) #define q1 (*(double*)q1x) #define q2 (*(double*)q2x) #define q3 (*(double*)q3x) #else /* IEEE double */ static double p1 = 1.3887401997267371720E-2 , /*Hex 2^ -7 * 1.C70FF8B3CC2CF */ p2 = 3.3044019718331897649E-5 , /*Hex 2^-15 * 1.15317DF4526C4 */ q1 = 1.1110813732786649355E-1 , /*Hex 2^ -4 * 1.C719538248597 */ q2 = 9.9176615021572857300E-4 ; /*Hex 2^-10 * 1.03FC4CB8C98E8 */ #endif double exp__E(x,c) double x,c; { double static zero=0.0, one=1.0, half=1.0/2.0, small=1.0E-19; double copysign(),z,p,q,xp,xh,w; if(copysign(x,one)>small) { z = x*x ; p = z*( p1 +z* p2 ); #ifdef VAX q = z*( q1 +z*( q2 +z* q3 )); #else /* IEEE double */ q = z*( q1 +z* q2 ); #endif xp= x*p ; xh= x*half ; w = xh-(q-xp) ; p = p+p; c += x*((xh*w-(q-(p+xp)))/(one-w)+c); return(z*half+c); } /* end of |x| > small */ else { if(x!=zero) one+small; /* raise the inexact flag */ return(copysign(zero,x)); } }