/* * Copyright (c) 1985 Regents of the University of California. * * Use and reproduction of this software are granted in accordance with * the terms and conditions specified in the Berkeley Software License * Agreement (in particular, this entails acknowledgement of the programs' * source, and inclusion of this notice) with the additional understanding * that all recipients should regard themselves as participants in an * ongoing research project and hence should feel obligated to report * their experiences (good or bad) with these elementary function codes, * using "sendbug 4bsd-bugs@BERKELEY", to the authors. */ #ifndef lint static char sccsid[] = "@(#)exp.c 4.3 (Berkeley) 8/21/85"; #endif not lint /* EXP(X) * RETURN THE EXPONENTIAL OF X * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS) * CODED IN C BY K.C. NG, 1/19/85; * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85. * * Required system supported functions: * scalb(x,n) * copysign(x,y) * finite(x) * * Kernel function: * exp__E(x,c) * * Method: * 1. Argument Reduction: given the input x, find r and integer k such * that * x = k*ln2 + r, |r| <= 0.5*ln2 . * r will be represented as r := z+c for better accuracy. * * 2. Compute expm1(r)=exp(r)-1 by * * expm1(r=z+c) := z + exp__E(z,r) * * 3. exp(x) = 2^k * ( expm1(r) + 1 ). * * Special cases: * exp(INF) is INF, exp(NaN) is NaN; * exp(-INF)= 0; * for finite argument, only exp(0)=1 is exact. * * Accuracy: * exp(x) returns the exponential of x nearly rounded. In a test run * with 1,156,000 random arguments on a VAX, the maximum observed * error was .768 ulps (units in the last place). * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */ #ifdef VAX /* VAX D format */ /* double static */ /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */ /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */ /* lnhuge = 9.4961163736712506989E1 , Hex 2^ 7 * .BDEC1DA73E9010 */ /* lntiny = -9.5654310917272452386E1 , Hex 2^ 7 * -.BF4F01D72E33AF */ /* invln2 = 1.4426950408889634148E0 ; Hex 2^ 1 * .B8AA3B295C17F1 */ static long ln2hix[] = { 0x72174031, 0x0000f7d0}; static long ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1}; static long lnhugex[] = { 0xec1d43bd, 0x9010a73e}; static long lntinyx[] = { 0x4f01c3bf, 0x33afd72e}; static long invln2x[] = { 0xaa3b40b8, 0x17f1295c}; #define ln2hi (*(double*)ln2hix) #define ln2lo (*(double*)ln2lox) #define lnhuge (*(double*)lnhugex) #define lntiny (*(double*)lntinyx) #define invln2 (*(double*)invln2x) #else /* IEEE double */ double static ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */ lnhuge = 7.1602103751842355450E2 , /*Hex 2^ 9 * 1.6602B15B7ECF2 */ lntiny = -7.5137154372698068983E2 , /*Hex 2^ 9 * -1.77AF8EBEAE354 */ invln2 = 1.4426950408889633870E0 ; /*Hex 2^ 0 * 1.71547652B82FE */ #endif double exp(x) double x; { double scalb(), copysign(), exp__E(), z,hi,lo,c; int k,finite(); #ifndef VAX if(x!=x) return(x); /* x is NaN */ #endif if( x <= lnhuge ) { if( x >= lntiny ) { /* argument reduction : x --> x - k*ln2 */ k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */ /* express x-k*ln2 as z+c */ hi=x-k*ln2hi; z=hi-(lo=k*ln2lo); c=(hi-z)-lo; /* return 2^k*[expm1(x) + 1] */ z += exp__E(z,c); return (scalb(z+1.0,k)); } /* end of x > lntiny */ else /* exp(-big#) underflows to zero */ if(finite(x)) return(scalb(1.0,-5000)); /* exp(-INF) is zero */ else return(0.0); } /* end of x < lnhuge */ else /* exp(INF) is INF, exp(+big#) overflows to INF */ return( finite(x) ? scalb(1.0,5000) : x); }