/* * Copyright (c) 1985 Regents of the University of California. * * Use and reproduction of this software are granted in accordance with * the terms and conditions specified in the Berkeley Software License * Agreement (in particular, this entails acknowledgement of the programs' * source, and inclusion of this notice) with the additional understanding * that all recipients should regard themselves as participants in an * ongoing research project and hence should feel obligated to report * their experiences (good or bad) with these elementary function codes, * using "sendbug 4bsd-bugs@BERKELEY", to the authors. */ #ifndef lint static char sccsid[] = "@(#)acosh.c 1.2 (Berkeley) 8/21/85"; #endif not lint /* ACOSH(X) * RETURN THE INVERSE HYPERBOLIC COSINE OF X * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS) * CODED IN C BY K.C. NG, 2/16/85; * REVISED BY K.C. NG on 3/6/85, 3/24/85, 4/16/85, 8/17/85. * * Required system supported functions : * sqrt(x) * * Required kernel function: * log1p(x) ...return log(1+x) * * Method : * Based on * acosh(x) = log [ x + sqrt(x*x-1) ] * we have * acosh(x) := log1p(x)+ln2, if (x > 1.0E20); else * acosh(x) := log1p( sqrt(x-1) * (sqrt(x-1) + sqrt(x+1)) ) . * These formulae avoid the over/underflow complication. * * Special cases: * acosh(x) is NaN with signal if x<1. * acosh(NaN) is NaN without signal. * * Accuracy: * acosh(x) returns the exact inverse hyperbolic cosine of x nearly * rounded. In a test run with 512,000 random arguments on a VAX, the * maximum observed error was 3.30 ulps (units of the last place) at * x=1.0070493753568216 . * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */ #ifdef VAX /* VAX D format */ /* static double */ /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */ /* ln2lo = 1.6465949582897081279E-12 ; Hex 2^-39 * .E7BCD5E4F1D9CC */ static long ln2hix[] = { 0x72174031, 0x0000f7d0}; static long ln2lox[] = { 0xbcd52ce7, 0xd9cce4f1}; #define ln2hi (*(double*)ln2hix) #define ln2lo (*(double*)ln2lox) #else /* IEEE double */ static double ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */ ln2lo = 1.9082149292705877000E-10 ; /*Hex 2^-33 * 1.A39EF35793C76 */ #endif double acosh(x) double x; { double log1p(),sqrt(),t,big=1.E20; /* big+1==big */ #ifndef VAX if(x!=x) return(x); /* x is NaN */ #endif /* return log1p(x) + log(2) if x is large */ if(x>big) {t=log1p(x)+ln2lo; return(t+ln2hi);} t=sqrt(x-1.0); return(log1p(t*(t+sqrt(x+1.0)))); }