/* * Copyright (c) 1982, 1986 Regents of the University of California. * All rights reserved. The Berkeley software License Agreement * specifies the terms and conditions for redistribution. * * @(#)kern_time.c 7.1 (Berkeley) 6/5/86 */ #include "../machine/reg.h" #include "param.h" #include "dir.h" /* XXX */ #include "user.h" #include "kernel.h" #include "inode.h" #include "proc.h" /* * Time of day and interval timer support. * * These routines provide the kernel entry points to get and set * the time-of-day and per-process interval timers. Subroutines * here provide support for adding and subtracting timeval structures * and decrementing interval timers, optionally reloading the interval * timers when they expire. */ gettimeofday() { register struct a { struct timeval *tp; struct timezone *tzp; } *uap = (struct a *)u.u_ap; struct timeval atv; microtime(&atv); u.u_error = copyout((caddr_t)&atv, (caddr_t)uap->tp, sizeof (atv)); if (u.u_error) return; if (uap->tzp == 0) return; /* SHOULD HAVE PER-PROCESS TIMEZONE */ u.u_error = copyout((caddr_t)&tz, (caddr_t)uap->tzp, sizeof (tz)); } settimeofday() { register struct a { struct timeval *tv; struct timezone *tzp; } *uap = (struct a *)u.u_ap; struct timeval atv; struct timezone atz; u.u_error = copyin((caddr_t)uap->tv, (caddr_t)&atv, sizeof (struct timeval)); if (u.u_error) return; setthetime(&atv); if (uap->tzp && suser()) { u.u_error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof (atz)); if (u.u_error == 0) tz = atz; } } setthetime(tv) struct timeval *tv; { int s; if (!suser()) return; /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */ boottime.tv_sec += tv->tv_sec - time.tv_sec; s = splhigh(); time = *tv; splx(s); resettodr(); } extern int tickadj; /* "standard" clock skew, us./tick */ int tickdelta; /* current clock skew, us. per tick */ long timedelta; /* unapplied time correction, us. */ long bigadj = 1000000; /* use 10x skew above bigadj us. */ adjtime() { register struct a { struct timeval *delta; struct timeval *olddelta; } *uap = (struct a *)u.u_ap; struct timeval atv, oatv; register long ndelta; int s; if (!suser()) return; u.u_error = copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof (struct timeval)); if (u.u_error) return; ndelta = atv.tv_sec * 1000000 + atv.tv_usec; if (timedelta == 0) if (ndelta > bigadj) tickdelta = 10 * tickadj; else tickdelta = tickadj; if (ndelta % tickdelta) ndelta = ndelta / tickadj * tickadj; s = splclock(); if (uap->olddelta) { oatv.tv_sec = timedelta / 1000000; oatv.tv_usec = timedelta % 1000000; } timedelta = ndelta; splx(s); if (uap->olddelta) (void) copyout((caddr_t)&oatv, (caddr_t)uap->olddelta, sizeof (struct timeval)); } /* * Get value of an interval timer. The process virtual and * profiling virtual time timers are kept in the u. area, since * they can be swapped out. These are kept internally in the * way they are specified externally: in time until they expire. * * The real time interval timer is kept in the process table slot * for the process, and its value (it_value) is kept as an * absolute time rather than as a delta, so that it is easy to keep * periodic real-time signals from drifting. * * Virtual time timers are processed in the hardclock() routine of * kern_clock.c. The real time timer is processed by a timeout * routine, called from the softclock() routine. Since a callout * may be delayed in real time due to interrupt processing in the system, * it is possible for the real time timeout routine (realitexpire, given below), * to be delayed in real time past when it is supposed to occur. It * does not suffice, therefore, to reload the real timer .it_value from the * real time timers .it_interval. Rather, we compute the next time in * absolute time the timer should go off. */ getitimer() { register struct a { u_int which; struct itimerval *itv; } *uap = (struct a *)u.u_ap; struct itimerval aitv; int s; if (uap->which > 2) { u.u_error = EINVAL; return; } s = splclock(); if (uap->which == ITIMER_REAL) { /* * Convert from absoulte to relative time in .it_value * part of real time timer. If time for real time timer * has passed return 0, else return difference between * current time and time for the timer to go off. */ aitv = u.u_procp->p_realtimer; if (timerisset(&aitv.it_value)) if (timercmp(&aitv.it_value, &time, <)) timerclear(&aitv.it_value); else timevalsub(&aitv.it_value, &time); } else aitv = u.u_timer[uap->which]; splx(s); u.u_error = copyout((caddr_t)&aitv, (caddr_t)uap->itv, sizeof (struct itimerval)); splx(s); } setitimer() { register struct a { u_int which; struct itimerval *itv, *oitv; } *uap = (struct a *)u.u_ap; struct itimerval aitv, *aitvp; int s; register struct proc *p = u.u_procp; if (uap->which > 2) { u.u_error = EINVAL; return; } aitvp = uap->itv; if (uap->oitv) { uap->itv = uap->oitv; getitimer(); } if (aitvp == 0) return; u.u_error = copyin((caddr_t)aitvp, (caddr_t)&aitv, sizeof (struct itimerval)); if (u.u_error) return; if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval)) { u.u_error = EINVAL; return; } s = splclock(); if (uap->which == ITIMER_REAL) { untimeout(realitexpire, (caddr_t)p); if (timerisset(&aitv.it_value)) { timevaladd(&aitv.it_value, &time); timeout(realitexpire, (caddr_t)p, hzto(&aitv.it_value)); } p->p_realtimer = aitv; } else u.u_timer[uap->which] = aitv; splx(s); } /* * Real interval timer expired: * send process whose timer expired an alarm signal. * If time is not set up to reload, then just return. * Else compute next time timer should go off which is > current time. * This is where delay in processing this timeout causes multiple * SIGALRM calls to be compressed into one. */ realitexpire(p) register struct proc *p; { int s; psignal(p, SIGALRM); if (!timerisset(&p->p_realtimer.it_interval)) { timerclear(&p->p_realtimer.it_value); return; } for (;;) { s = splclock(); timevaladd(&p->p_realtimer.it_value, &p->p_realtimer.it_interval); if (timercmp(&p->p_realtimer.it_value, &time, >)) { timeout(realitexpire, (caddr_t)p, hzto(&p->p_realtimer.it_value)); splx(s); return; } splx(s); } } /* * Check that a proposed value to load into the .it_value or * .it_interval part of an interval timer is acceptable, and * fix it to have at least minimal value (i.e. if it is less * than the resolution of the clock, round it up.) */ itimerfix(tv) struct timeval *tv; { if (tv->tv_sec < 0 || tv->tv_sec > 100000000 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) return (EINVAL); if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick) tv->tv_usec = tick; return (0); } /* * Decrement an interval timer by a specified number * of microseconds, which must be less than a second, * i.e. < 1000000. If the timer expires, then reload * it. In this case, carry over (usec - old value) to * reducint the value reloaded into the timer so that * the timer does not drift. This routine assumes * that it is called in a context where the timers * on which it is operating cannot change in value. */ itimerdecr(itp, usec) register struct itimerval *itp; int usec; { if (itp->it_value.tv_usec < usec) { if (itp->it_value.tv_sec == 0) { /* expired, and already in next interval */ usec -= itp->it_value.tv_usec; goto expire; } itp->it_value.tv_usec += 1000000; itp->it_value.tv_sec--; } itp->it_value.tv_usec -= usec; usec = 0; if (timerisset(&itp->it_value)) return (1); /* expired, exactly at end of interval */ expire: if (timerisset(&itp->it_interval)) { itp->it_value = itp->it_interval; itp->it_value.tv_usec -= usec; if (itp->it_value.tv_usec < 0) { itp->it_value.tv_usec += 1000000; itp->it_value.tv_sec--; } } else itp->it_value.tv_usec = 0; /* sec is already 0 */ return (0); } /* * Add and subtract routines for timevals. * N.B.: subtract routine doesn't deal with * results which are before the beginning, * it just gets very confused in this case. * Caveat emptor. */ timevaladd(t1, t2) struct timeval *t1, *t2; { t1->tv_sec += t2->tv_sec; t1->tv_usec += t2->tv_usec; timevalfix(t1); } timevalsub(t1, t2) struct timeval *t1, *t2; { t1->tv_sec -= t2->tv_sec; t1->tv_usec -= t2->tv_usec; timevalfix(t1); } timevalfix(t1) struct timeval *t1; { if (t1->tv_usec < 0) { t1->tv_sec--; t1->tv_usec += 1000000; } if (t1->tv_usec >= 1000000) { t1->tv_sec++; t1->tv_usec -= 1000000; } }