/* * SCCS id @(#)bio.c 2.1 (Berkeley) 8/5/83 */ #include "param.h" #include #include #include #include #include #include #include #ifdef UCB_METER #include #endif #ifdef UNIBUS_MAP #include #endif #ifdef DISKMON struct ioinfo io_info; #endif /* * swap IO headers. * they are filled in to point * at the desired IO operation. */ struct buf swbuf1; struct buf swbuf2; /* * The following several routines allocate and free * buffers with various side effects. In general the * arguments to an allocate routine are a device and * a block number, and the value is a pointer to * to the buffer header; the buffer is marked "busy" * so that no one else can touch it. If the block was * already in core, no I/O need be done; if it is * already busy, the process waits until it becomes free. * The following routines allocate a buffer: * getblk * bread * breada * Eventually the buffer must be released, possibly with the * side effect of writing it out, by using one of * bwrite * bdwrite * bawrite * brelse */ #ifdef UCB_BHASH #ifdef SMALL #define BUFHSZ 8 /* must be power of 2 */ #else #define BUFHSZ 64 /* must be power of 2 */ #endif SMALL #define BUFHASH(blkno) (blkno & (BUFHSZ-1)) struct buf *bhash[BUFHSZ]; #endif /* * Read in (if necessary) the block and return a buffer pointer. */ struct buf * bread(dev, blkno) register dev_t dev; daddr_t blkno; { register struct buf *bp; bp = getblk(dev, blkno); if (bp->b_flags&B_DONE) { #ifdef DISKMON io_info.ncache++; #endif return(bp); } bp->b_flags |= B_READ; bp->b_bcount = BSIZE; (void) (*bdevsw[major(dev)].d_strategy)(bp); #ifdef DISKMON io_info.nread++; #endif iowait(bp); return(bp); } /* * Read in the block, like bread, but also start I/O on the * read-ahead block (which is not allocated to the caller) */ struct buf * breada(dev, blkno, rablkno) register dev_t dev; daddr_t blkno, rablkno; { register struct buf *bp, *rabp; bp = NULL; if (!incore(dev, blkno)) { bp = getblk(dev, blkno); if ((bp->b_flags&B_DONE) == 0) { bp->b_flags |= B_READ; bp->b_bcount = BSIZE; (void) (*bdevsw[major(dev)].d_strategy)(bp); #ifdef DISKMON io_info.nread++; #endif } } if (rablkno && !incore(dev, rablkno)) { rabp = getblk(dev, rablkno); if (rabp->b_flags & B_DONE) brelse(rabp); else { rabp->b_flags |= B_READ|B_ASYNC; rabp->b_bcount = BSIZE; (void) (*bdevsw[major(dev)].d_strategy)(rabp); #ifdef DISKMON io_info.nreada++; #endif } } if(bp == NULL) return(bread(dev, blkno)); iowait(bp); return(bp); } /* * Write the buffer, waiting for completion. * Then release the buffer. */ bwrite(bp) register struct buf *bp; { register flag; flag = bp->b_flags; bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI); bp->b_bcount = BSIZE; #ifdef DISKMON io_info.nwrite++; #endif (void) (*bdevsw[major(bp->b_dev)].d_strategy)(bp); if ((flag&B_ASYNC) == 0) { iowait(bp); brelse(bp); } else if (flag & B_DELWRI) bp->b_flags |= B_AGE; } /* * Release the buffer, marking it so that if it is grabbed * for another purpose it will be written out before being * given up (e.g. when writing a partial block where it is * assumed that another write for the same block will soon follow). * This can't be done for magtape, since writes must be done * in the same order as requested. */ bdwrite(bp) register struct buf *bp; { register struct buf *dp; dp = bdevsw[major(bp->b_dev)].d_tab; if(dp->b_flags & B_TAPE) bawrite(bp); else { bp->b_flags |= B_DELWRI | B_DONE; brelse(bp); } } /* * Release the buffer, start I/O on it, but don't wait for completion. */ bawrite(bp) register struct buf *bp; { bp->b_flags |= B_ASYNC; bwrite(bp); } /* * release the buffer, with no I/O implied. */ brelse(bp) register struct buf *bp; { register struct buf **backp; register s; if (bp->b_flags&B_WANTED) wakeup((caddr_t)bp); if (bfreelist.b_flags&B_WANTED) { bfreelist.b_flags &= ~B_WANTED; wakeup((caddr_t)&bfreelist); } if (bp->b_flags&B_ERROR) { #ifdef UCB_BHASH bunhash(bp); #endif bp->b_dev = NODEV; /* no assoc. on error */ } s = spl6(); if(bp->b_flags & B_AGE) { backp = &bfreelist.av_forw; (*backp)->av_back = bp; bp->av_forw = *backp; *backp = bp; bp->av_back = &bfreelist; } else { backp = &bfreelist.av_back; (*backp)->av_forw = bp; bp->av_back = *backp; *backp = bp; bp->av_forw = &bfreelist; } bp->b_flags &= ~(B_WANTED|B_BUSY|B_ASYNC|B_AGE); splx(s); } /* * See if the block is associated with some buffer * (mainly to avoid getting hung up on a wait in breada) */ incore(dev, blkno) register dev_t dev; daddr_t blkno; { register struct buf *bp; #ifndef UCB_BHASH register struct buf *dp; #endif #ifdef UCB_BHASH bp = bhash[BUFHASH(blkno)]; blkno = fsbtodb(blkno); for(; bp != NULL; bp = bp->b_link) #else dp = bdevsw[major(dev)].d_tab; blkno = fsbtodb(blkno); for (bp = dp->b_forw; bp != dp; bp = bp->b_forw) #endif if (bp->b_blkno == blkno && bp->b_dev == dev) return(1); return(0); } /* * Assign a buffer for the given block. If the appropriate * block is already associated, return it; otherwise search * for the oldest non-busy buffer and reassign it. */ struct buf * getblk(dev, blkno) dev_t dev; daddr_t blkno; { register struct buf *bp; register struct buf *dp; #ifdef UCB_BHASH register int j; #endif daddr_t dblkno; if(major(dev) >= nblkdev) panic("blkdev"); dp = bdevsw[major(dev)].d_tab; if(dp == NULL) panic("devtab"); loop: (void) _spl0(); #ifdef UCB_BHASH j = BUFHASH(blkno); bp = bhash[j]; dblkno = fsbtodb(blkno); for(; bp != NULL; bp = bp->b_link) #else for (bp=dp->b_forw; bp != dp; bp = bp->b_forw) #endif { if (bp->b_blkno != dblkno || bp->b_dev != dev) continue; (void) _spl6(); if (bp->b_flags&B_BUSY) { bp->b_flags |= B_WANTED; sleep((caddr_t)bp, PRIBIO+1); goto loop; } (void) _spl0(); notavail(bp); return(bp); } (void) _spl6(); if (bfreelist.av_forw == &bfreelist) { bfreelist.b_flags |= B_WANTED; sleep((caddr_t)&bfreelist, PRIBIO+1); goto loop; } (void) _spl0(); notavail(bp = bfreelist.av_forw); if (bp->b_flags & B_DELWRI) { bawrite(bp); goto loop; } #ifdef UCB_BHASH bunhash(bp); #endif bp->b_flags = B_BUSY; bp->b_back->b_forw = bp->b_forw; bp->b_forw->b_back = bp->b_back; bp->b_forw = dp->b_forw; bp->b_back = dp; dp->b_forw->b_back = bp; dp->b_forw = bp; bp->b_dev = dev; bp->b_blkno = dblkno; #ifdef UCB_BHASH bp->b_link = bhash[j]; bhash[j] = bp; #endif return(bp); } /* * Get a block not assigned to any device */ struct buf * geteblk() { register struct buf *bp; register struct buf *dp; loop: (void) _spl6(); while (bfreelist.av_forw == &bfreelist) { bfreelist.b_flags |= B_WANTED; sleep((caddr_t)&bfreelist, PRIBIO+1); } (void) _spl0(); dp = &bfreelist; notavail(bp = bfreelist.av_forw); if (bp->b_flags & B_DELWRI) { bp->b_flags |= B_ASYNC; bwrite(bp); goto loop; } #ifdef UCB_BHASH bunhash(bp); #endif bp->b_flags = B_BUSY; bp->b_back->b_forw = bp->b_forw; bp->b_forw->b_back = bp->b_back; bp->b_forw = dp->b_forw; bp->b_back = dp; dp->b_forw->b_back = bp; dp->b_forw = bp; bp->b_dev = (dev_t)NODEV; #ifdef UCB_BHASH bp->b_link = NULL; #endif return(bp); } #ifdef UCB_BHASH bunhash(bp) register struct buf *bp; { register struct buf *ep; register int i; if (bp->b_dev == NODEV) return; i = BUFHASH(dbtofsb(bp->b_blkno)); ep = bhash[i]; if (ep == bp) { bhash[i] = bp->b_link; return; } for(; ep != NULL; ep = ep->b_link) if (ep->b_link == bp) { ep->b_link = bp->b_link; return; } panic("bunhash"); } #endif /* * Wait for I/O completion on the buffer; return errors * to the user. */ iowait(bp) register struct buf *bp; { (void) _spl6(); while ((bp->b_flags&B_DONE)==0) sleep((caddr_t)bp, PRIBIO); (void) _spl0(); geterror(bp); } /* * Unlink a buffer from the available list and mark it busy. * (internal interface) */ notavail(bp) register struct buf *bp; { register s; s = spl6(); bp->av_back->av_forw = bp->av_forw; bp->av_forw->av_back = bp->av_back; bp->b_flags |= B_BUSY; splx(s); } /* * Mark I/O complete on a buffer, release it if I/O is asynchronous, * and wake up anyone waiting for it. */ iodone(bp) register struct buf *bp; { #ifdef UNIBUS_MAP if(bp->b_flags & (B_MAP|B_UBAREMAP)) mapfree(bp); #endif bp->b_flags |= B_DONE; if (bp->b_flags&B_ASYNC) brelse(bp); else { bp->b_flags &= ~B_WANTED; wakeup((caddr_t)bp); } } /* * Zero the core associated with a buffer. * Since this routine calls mapin, * it cannot be called from interrupt routines. */ clrbuf(bp) register struct buf *bp; { register *p; register c; p = (int *) mapin(bp); c = (BSIZE/sizeof(int)) >> 2; do { *p++ = 0; *p++ = 0; *p++ = 0; *p++ = 0; } while (--c); bp->b_resid = 0; mapout(bp); } /* * swap I/O */ swap(blkno, coreaddr, count, rdflg) memaddr blkno, coreaddr; register count; { register struct buf *bp; register tcount; #ifdef UCB_METER if (rdflg) { cnt.v_pswpin += count; cnt.v_swpin++; } else { cnt.v_pswpout += count; cnt.v_swpout++; } #endif bp = &swbuf1; if(bp->b_flags & B_BUSY) if((swbuf2.b_flags&B_WANTED) == 0) bp = &swbuf2; (void) _spl6(); while (bp->b_flags&B_BUSY) { bp->b_flags |= B_WANTED; sleep((caddr_t)bp, PSWP+1); } (void) _spl0(); while (count) { bp->b_flags = B_BUSY | B_PHYS | rdflg; bp->b_dev = swapdev; tcount = count; if (tcount >= 01700) /* prevent byte-count wrap */ tcount = 01700; bp->b_bcount = ctob(tcount); bp->b_blkno = swplo+blkno; bp->b_un.b_addr = (caddr_t)(coreaddr<<6); bp->b_xmem = (coreaddr>>10) & 077; (*bdevsw[major(swapdev)].d_strategy)(bp); (void) _spl6(); while((bp->b_flags&B_DONE)==0) sleep((caddr_t)bp, PSWP); (void) _spl0(); if ((bp->b_flags & B_ERROR) || bp->b_resid) panic("IO err in swap"); count -= tcount; coreaddr += tcount; blkno += ctod(tcount); } if (bp->b_flags&B_WANTED) wakeup((caddr_t)bp); bp->b_flags &= ~(B_BUSY|B_WANTED); } /* * make sure all write-behind blocks * on dev (or NODEV for all) * are flushed out. * (from umount and update) */ bflush(dev) register dev_t dev; { register struct buf *bp; loop: (void) _spl6(); for (bp = bfreelist.av_forw; bp != &bfreelist; bp = bp->av_forw) { if (bp->b_flags&B_DELWRI && (dev == NODEV||dev==bp->b_dev)) { bp->b_flags |= B_ASYNC; notavail(bp); bwrite(bp); goto loop; } } (void) _spl0(); } /* * Raw I/O. The arguments are * The strategy routine for the device * A buffer, which will always be a special buffer * header owned exclusively by the device for this purpose * The device number * Read/write flag * Essentially all the work is computing physical addresses and * validating them. * * physio broken into smaller routines, 3/81 mjk * chkphys(WORD or BYTE) checks validity of word- or byte- * oriented transfer (for physio or device drivers); * physbuf(strat,bp,rw) fills in the buffer header. * * physio divided into two functions, 1/83 - Mike Edmonds - Tektronix * Physio divided into separate functions: * physio (for WORD i/o) * bphysio (for BYTE i/o) * This allows byte-oriented devices (such as tape drives) * to write/read odd length blocks. */ physio(strat, bp, dev, rw) register struct buf *bp; int (*strat)(); dev_t dev; { physio1(strat, bp, dev, rw, WORD); } bphysio(strat, bp, dev, rw) register struct buf *bp; int (*strat)(); dev_t dev; { physio1(strat, bp, dev, rw, BYTE); } physio1(strat, bp, dev, rw, kind) register struct buf *bp; int (*strat)(); dev_t dev; { if (chkphys(kind)) return; physbuf(bp,dev,rw); u.u_procp->p_flag |= SLOCK; (*strat)(bp); iowait(bp); u.u_procp->p_flag &= ~SLOCK; if (bp->b_flags&B_WANTED) wakeup((caddr_t)bp); bp->b_flags &= ~(B_BUSY|B_WANTED); u.u_count = bp->b_resid; } /* * check for validity of physical I/O area * (modified from physio to use flag for BYTE-oriented transfers) */ chkphys(flag) { register unsigned base; register int nb; register ts; base = (unsigned)u.u_base; /* * Check odd base, odd count, and address wraparound * Odd base and count not allowed if flag=WORD, * allowed if flag=BYTE. */ if (flag==WORD && (base&01 || u.u_count&01)) goto bad; if (base>=base+u.u_count) goto bad; if (u.u_sep) ts = 0; else ts = (u.u_tsize+127) & ~0177; nb = (base>>6) & 01777; /* * Check overlap with text. (ts and nb now * in 64-byte clicks) */ if (nb < ts) goto bad; /* * Check that transfer is either entirely in the * data or in the stack: that is, either * the end is in the data or the start is in the stack * (remember wraparound was already checked). */ if ((((base+u.u_count)>>6)&01777) >= ts+u.u_dsize && nb < 1024-u.u_ssize) goto bad; return(0); bad: u.u_error = EFAULT; return(-1); } /* * wait for buffer header, then fill it in to do physical I/O. */ physbuf(bp,dev,rw) register struct buf *bp; dev_t dev; { register int nb; register unsigned base; register int ts; base = (unsigned)u.u_base; nb = (base>>6) & 01777; (void) _spl6(); while (bp->b_flags&B_BUSY) { bp->b_flags |= B_WANTED; sleep((caddr_t)bp, PRIBIO+1); } (void) _spl0(); bp->b_flags = B_BUSY | B_PHYS | rw; bp->b_dev = dev; /* * Compute physical address by simulating * the segmentation hardware. */ ts = (u.u_sep? UDSA: UISA)[nb>>7] + (nb&0177); bp->b_un.b_addr = (caddr_t)((ts<<6) + (base&077)); bp->b_xmem = (ts>>10) & 077; bp->b_blkno = u.u_offset >> PGSHIFT; bp->b_bcount = u.u_count; bp->b_error = 0; } /* * Pick up the device's error number and pass it to the user; * if there is an error but the number is 0 set a generalized * code. */ geterror(bp) register struct buf *bp; { if (bp->b_flags&B_ERROR) if ((u.u_error = bp->b_error)==0) u.u_error = EIO; }